Back to Documentation
Architecture Patterns
Microservices Architecture on AWS
Comprehensive guide to building microservices using ECS, Fargate, and service mesh patterns on AWS.
15 min read
Updated Dec 15, 2025
MicroservicesECSContainers
Microservices Architecture on AWS
Overview
Microservices architecture is an approach where a single application is composed of many loosely coupled and independently deployable services.
Architecture Pattern
graph TB subgraph "Client Layer" UI[Web UI] end subgraph "API Gateway Layer" ALB[Application Load Balancer] APIG[API Gateway] end subgraph "Service Mesh" SM[App Mesh] end subgraph "Microservices" MS1[User Service<br/>ECS/Fargate] MS2[Order Service<br/>ECS/Fargate] MS3[Payment Service<br/>ECS/Fargate] MS4[Inventory Service<br/>ECS/Fargate] MS5[Notification Service<br/>Lambda] end subgraph "Data Layer" DB1[(RDS - Users)] DB2[(DynamoDB - Orders)] DB3[(ElastiCache)] DB4[(RDS - Inventory)] end subgraph "Messaging" SQS[SQS] SNS[SNS] EventBridge[EventBridge] end UI --> ALB UI --> APIG ALB --> SM APIG --> SM SM --> MS1 SM --> MS2 SM --> MS3 SM --> MS4 MS1 --> DB1 MS2 --> DB2 MS2 --> SQS MS3 --> DB3 MS4 --> DB4 SQS --> MS5 MS5 --> SNS EventBridge --> MS5 style UI fill:#e8f5e9 style ALB fill:#fff3e0 style MS1 fill:#e3f2fd style MS2 fill:#e3f2fd style MS3 fill:#e3f2fd style MS4 fill:#e3f2fd style MS5 fill:#e1bee7
Core Principles
1. Service Independence
Each microservice can be:
- Developed independently
- Deployed independently
- Scaled independently
- Failed independently
2. Decentralized Data Management
- Each service owns its data
- No shared databases
- Data consistency via events
3. API-First Design
- Well-defined service contracts
- Versioned APIs
- Backward compatibility
AWS Services for Microservices
| Component | AWS Service | Purpose |
|---|---|---|
| Container Orchestration | ECS/EKS | Run and manage containers |
| Compute | Fargate/EC2 | Serverless or managed compute |
| Service Discovery | Cloud Map | Automatic service discovery |
| Load Balancing | ALB/NLB | Distribute traffic |
| Service Mesh | App Mesh | Service-to-service communication |
| API Management | API Gateway | API lifecycle management |
| Messaging | SQS/SNS/EventBridge | Async communication |
Communication Patterns
Synchronous Communication
sequenceDiagram participant Client participant API Gateway participant Service A participant Service B Client->>API Gateway: Request API Gateway->>Service A: Forward Request Service A->>Service B: HTTP/gRPC Call Service B-->>Service A: Response Service A-->>API Gateway: Response API Gateway-->>Client: Response
Asynchronous Communication
sequenceDiagram participant Service A participant EventBridge participant SQS Queue participant Service B participant Service C Service A->>EventBridge: Publish Event EventBridge->>SQS Queue: Route Event EventBridge->>Service C: Direct Invocation Service B->>SQS Queue: Poll Messages SQS Queue-->>Service B: Deliver Message
Implementation Example
Service Definition (ECS Task)
1interface MicroserviceConfig { 2 name: string; 3 image: string; 4 cpu: number; 5 memory: number; 6 environment: Record<string, string>; 7 ports: number[]; 8} 9 10const userServiceConfig: MicroserviceConfig = { 11 name: 'user-service', 12 image: 'user-service:latest', 13 cpu: 256, 14 memory: 512, 15 environment: { 16 DB_HOST: 'user-db.cluster.region.rds.amazonaws.com', 17 CACHE_ENDPOINT: 'redis.cache.amazonaws.com', 18 SERVICE_MESH_ENABLED: 'true' 19 }, 20 ports: [3000] 21};
Service Communication
1// Using AWS SDK for service-to-service communication 2import { ServiceDiscovery } from 'aws-sdk'; 3 4class ServiceClient { 5 async callService(serviceName: string, endpoint: string, data: any) { 6 // Discover service instance 7 const serviceUrl = await this.discoverService(serviceName); 8 9 // Make HTTP request with retry logic 10 const response = await fetch(`${serviceUrl}${endpoint}`, { 11 method: 'POST', 12 headers: { 13 'Content-Type': 'application/json', 14 'X-Trace-Id': generateTraceId() 15 }, 16 body: JSON.stringify(data) 17 }); 18 19 return response.json(); 20 } 21 22 private async discoverService(serviceName: string): Promise<string> { 23 // AWS Cloud Map service discovery 24 const discovery = new ServiceDiscovery(); 25 const instances = await discovery.discoverInstances({ 26 NamespaceName: 'microservices', 27 ServiceName: serviceName 28 }).promise(); 29 30 return instances.Instances[0].Attributes.AWS_INSTANCE_IPV4; 31 } 32}
Data Management Patterns
1. Database per Service
graph LR A[User Service] --> B[(User DB)] C[Order Service] --> D[(Order DB)] E[Payment Service] --> F[(Payment DB)] style A fill:#e3f2fd style C fill:#e3f2fd style E fill:#e3f2fd style B fill:#f3e5f5 style D fill:#f3e5f5 style F fill:#f3e5f5
2. Event Sourcing
graph LR A[Service] --> B[Event Store] B --> C[Event 1: User Created] B --> D[Event 2: Profile Updated] B --> E[Event 3: Email Verified] C --> F[Read Model 1] D --> F E --> F
3. CQRS Pattern
graph TB A[Command] --> B[Write Model] B --> C[Event Bus] C --> D[Read Model 1] C --> E[Read Model 2] F[Query] --> D F --> E style A fill:#ffcdd2 style B fill:#f8bbd0 style C fill:#e1bee7 style D fill:#c5cae9 style E fill:#c5cae9 style F fill:#b2dfdb
Service Deployment
Container Deployment (ECS)
1# docker-compose.yml for ECS 2version: '3' 3services: 4 user-service: 5 image: user-service:latest 6 ports: 7 - "3000:3000" 8 environment: 9 - DB_HOST=user-db 10 - REDIS_HOST=redis 11 deploy: 12 replicas: 3 13 resources: 14 limits: 15 cpus: '0.5' 16 memory: 512M
Best Practices
Design Principles
- ✅ Single Responsibility: Each service does one thing well
- ✅ Loose Coupling: Minimize dependencies between services
- ✅ High Cohesion: Related functionality stays together
- ✅ Autonomous: Services are independently deployable
- ✅ Observable: Built-in logging, metrics, and tracing
Operational Excellence
- Containerization: Use Docker for consistency
- CI/CD Pipeline: Automated testing and deployment
- Service Discovery: Dynamic service registration
- Health Checks: Liveness and readiness probes
- Circuit Breakers: Prevent cascade failures
Security
graph TD A[WAF] --> B[ALB] B --> C[Service Mesh] C --> D[mTLS] D --> E[IAM Roles] E --> F[Service] F --> G[Secrets Manager] style A fill:#ffcdd2 style D fill:#ffcdd2 style E fill:#ffcdd2 style G fill:#ffcdd2
Monitoring Strategy
Observability Pillars
-
Logging
- Centralized logging with CloudWatch
- Structured logging format
- Correlation IDs across services
-
Metrics
- Service-level metrics
- Business metrics
- Infrastructure metrics
-
Tracing
- Distributed tracing with X-Ray
- Request flow visualization
- Performance bottleneck identification
Challenges and Solutions
| Challenge | Solution |
|---|---|
| Service Discovery | AWS Cloud Map |
| Distributed Transactions | Saga Pattern, Event Sourcing |
| Data Consistency | Eventual Consistency, CQRS |
| Inter-service Communication | Service Mesh (App Mesh) |
| Monitoring Complexity | Centralized Observability Platform |
| Testing | Contract Testing, Service Virtualization |
Cost Optimization
- Use Fargate for serverless container management
- Implement auto-scaling policies
- Leverage spot instances for non-critical services
- Use caching strategically (ElastiCache)
- Optimize container sizes and resource allocation
Related Patterns
On This Page
The table of contents is automatically generated from the document headings.
Back to all documentation
Last updated: Dec 15, 2025