Back to Documentation
Architecture Patterns

Microservices Architecture on AWS

Comprehensive guide to building microservices using ECS, Fargate, and service mesh patterns on AWS.

15 min read
Updated Dec 15, 2025
MicroservicesECSContainers

Microservices Architecture on AWS

Overview

Microservices architecture is an approach where a single application is composed of many loosely coupled and independently deployable services.

Architecture Pattern

graph TB subgraph "Client Layer" UI[Web UI] end subgraph "API Gateway Layer" ALB[Application Load Balancer] APIG[API Gateway] end subgraph "Service Mesh" SM[App Mesh] end subgraph "Microservices" MS1[User Service<br/>ECS/Fargate] MS2[Order Service<br/>ECS/Fargate] MS3[Payment Service<br/>ECS/Fargate] MS4[Inventory Service<br/>ECS/Fargate] MS5[Notification Service<br/>Lambda] end subgraph "Data Layer" DB1[(RDS - Users)] DB2[(DynamoDB - Orders)] DB3[(ElastiCache)] DB4[(RDS - Inventory)] end subgraph "Messaging" SQS[SQS] SNS[SNS] EventBridge[EventBridge] end UI --> ALB UI --> APIG ALB --> SM APIG --> SM SM --> MS1 SM --> MS2 SM --> MS3 SM --> MS4 MS1 --> DB1 MS2 --> DB2 MS2 --> SQS MS3 --> DB3 MS4 --> DB4 SQS --> MS5 MS5 --> SNS EventBridge --> MS5 style UI fill:#e8f5e9 style ALB fill:#fff3e0 style MS1 fill:#e3f2fd style MS2 fill:#e3f2fd style MS3 fill:#e3f2fd style MS4 fill:#e3f2fd style MS5 fill:#e1bee7

Core Principles

1. Service Independence

Each microservice can be:

  • Developed independently
  • Deployed independently
  • Scaled independently
  • Failed independently

2. Decentralized Data Management

  • Each service owns its data
  • No shared databases
  • Data consistency via events

3. API-First Design

  • Well-defined service contracts
  • Versioned APIs
  • Backward compatibility

AWS Services for Microservices

ComponentAWS ServicePurpose
Container OrchestrationECS/EKSRun and manage containers
ComputeFargate/EC2Serverless or managed compute
Service DiscoveryCloud MapAutomatic service discovery
Load BalancingALB/NLBDistribute traffic
Service MeshApp MeshService-to-service communication
API ManagementAPI GatewayAPI lifecycle management
MessagingSQS/SNS/EventBridgeAsync communication

Communication Patterns

Synchronous Communication

sequenceDiagram participant Client participant API Gateway participant Service A participant Service B Client->>API Gateway: Request API Gateway->>Service A: Forward Request Service A->>Service B: HTTP/gRPC Call Service B-->>Service A: Response Service A-->>API Gateway: Response API Gateway-->>Client: Response

Asynchronous Communication

sequenceDiagram participant Service A participant EventBridge participant SQS Queue participant Service B participant Service C Service A->>EventBridge: Publish Event EventBridge->>SQS Queue: Route Event EventBridge->>Service C: Direct Invocation Service B->>SQS Queue: Poll Messages SQS Queue-->>Service B: Deliver Message

Implementation Example

Service Definition (ECS Task)

1interface MicroserviceConfig { 2 name: string; 3 image: string; 4 cpu: number; 5 memory: number; 6 environment: Record<string, string>; 7 ports: number[]; 8} 9 10const userServiceConfig: MicroserviceConfig = { 11 name: 'user-service', 12 image: 'user-service:latest', 13 cpu: 256, 14 memory: 512, 15 environment: { 16 DB_HOST: 'user-db.cluster.region.rds.amazonaws.com', 17 CACHE_ENDPOINT: 'redis.cache.amazonaws.com', 18 SERVICE_MESH_ENABLED: 'true' 19 }, 20 ports: [3000] 21};

Service Communication

1// Using AWS SDK for service-to-service communication 2import { ServiceDiscovery } from 'aws-sdk'; 3 4class ServiceClient { 5 async callService(serviceName: string, endpoint: string, data: any) { 6 // Discover service instance 7 const serviceUrl = await this.discoverService(serviceName); 8 9 // Make HTTP request with retry logic 10 const response = await fetch(`${serviceUrl}${endpoint}`, { 11 method: 'POST', 12 headers: { 13 'Content-Type': 'application/json', 14 'X-Trace-Id': generateTraceId() 15 }, 16 body: JSON.stringify(data) 17 }); 18 19 return response.json(); 20 } 21 22 private async discoverService(serviceName: string): Promise<string> { 23 // AWS Cloud Map service discovery 24 const discovery = new ServiceDiscovery(); 25 const instances = await discovery.discoverInstances({ 26 NamespaceName: 'microservices', 27 ServiceName: serviceName 28 }).promise(); 29 30 return instances.Instances[0].Attributes.AWS_INSTANCE_IPV4; 31 } 32}

Data Management Patterns

1. Database per Service

graph LR A[User Service] --> B[(User DB)] C[Order Service] --> D[(Order DB)] E[Payment Service] --> F[(Payment DB)] style A fill:#e3f2fd style C fill:#e3f2fd style E fill:#e3f2fd style B fill:#f3e5f5 style D fill:#f3e5f5 style F fill:#f3e5f5

2. Event Sourcing

graph LR A[Service] --> B[Event Store] B --> C[Event 1: User Created] B --> D[Event 2: Profile Updated] B --> E[Event 3: Email Verified] C --> F[Read Model 1] D --> F E --> F

3. CQRS Pattern

graph TB A[Command] --> B[Write Model] B --> C[Event Bus] C --> D[Read Model 1] C --> E[Read Model 2] F[Query] --> D F --> E style A fill:#ffcdd2 style B fill:#f8bbd0 style C fill:#e1bee7 style D fill:#c5cae9 style E fill:#c5cae9 style F fill:#b2dfdb

Service Deployment

Container Deployment (ECS)

1# docker-compose.yml for ECS 2version: '3' 3services: 4 user-service: 5 image: user-service:latest 6 ports: 7 - "3000:3000" 8 environment: 9 - DB_HOST=user-db 10 - REDIS_HOST=redis 11 deploy: 12 replicas: 3 13 resources: 14 limits: 15 cpus: '0.5' 16 memory: 512M

Best Practices

Design Principles

  1. Single Responsibility: Each service does one thing well
  2. Loose Coupling: Minimize dependencies between services
  3. High Cohesion: Related functionality stays together
  4. Autonomous: Services are independently deployable
  5. Observable: Built-in logging, metrics, and tracing

Operational Excellence

  • Containerization: Use Docker for consistency
  • CI/CD Pipeline: Automated testing and deployment
  • Service Discovery: Dynamic service registration
  • Health Checks: Liveness and readiness probes
  • Circuit Breakers: Prevent cascade failures

Security

graph TD A[WAF] --> B[ALB] B --> C[Service Mesh] C --> D[mTLS] D --> E[IAM Roles] E --> F[Service] F --> G[Secrets Manager] style A fill:#ffcdd2 style D fill:#ffcdd2 style E fill:#ffcdd2 style G fill:#ffcdd2

Monitoring Strategy

Observability Pillars

  1. Logging

    • Centralized logging with CloudWatch
    • Structured logging format
    • Correlation IDs across services
  2. Metrics

    • Service-level metrics
    • Business metrics
    • Infrastructure metrics
  3. Tracing

    • Distributed tracing with X-Ray
    • Request flow visualization
    • Performance bottleneck identification

Challenges and Solutions

ChallengeSolution
Service DiscoveryAWS Cloud Map
Distributed TransactionsSaga Pattern, Event Sourcing
Data ConsistencyEventual Consistency, CQRS
Inter-service CommunicationService Mesh (App Mesh)
Monitoring ComplexityCentralized Observability Platform
TestingContract Testing, Service Virtualization

Cost Optimization

  • Use Fargate for serverless container management
  • Implement auto-scaling policies
  • Leverage spot instances for non-critical services
  • Use caching strategically (ElastiCache)
  • Optimize container sizes and resource allocation

Related Patterns

Back to all documentation
Last updated: Dec 15, 2025